The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 0 1 1 1 X X 1 1 X^2 0 1 1 0 1 X 1 1 0 1 X 1 0 X 1 X^2 1 1 1 X^2 X^2 1 X 0 X 0 0 0 0 0 0 X^2 X X^2+X X^2+X X X X^2+X X^2+X X^2 X^2 0 X X X^2+X X 0 X X 0 X^2+X X X^2 X^2 X^2 X^2+X X^2+X X^2+X X^2+X X X^2+X X^2+X X^2+X X^2+X X X^2+X X^2 X X X^2 X^2+X 0 X^2 X^2+X 0 X X^2 X^2+X X 0 X X X^2+X 0 X^2+X X^2 X X X X 0 0 0 X 0 0 0 X X^2+X X^2+X X X X^2 X X X^2 0 X^2 X^2+X X^2+X X^2+X 0 X X^2+X X^2+X 0 X^2+X X^2+X X^2 X^2 0 0 X^2 X^2 X^2+X X X^2+X X 0 X^2 X X X^2+X 0 0 0 0 0 X X X X X^2+X X 0 X^2 X X^2+X 0 X^2 X X X^2+X X X X^2 X^2 X^2 X^2 0 0 0 X 0 X X X 0 X^2 0 X X^2+X X^2+X X X^2 X^2 0 0 0 X^2 X^2 X^2+X X X^2+X X X 0 X X^2 X^2+X X^2+X X^2+X X X^2+X X^2+X X X 0 X^2 X^2 X X^2+X X X 0 X X^2+X X^2 X^2+X X X^2+X X^2+X X X^2 X X^2+X X^2 X^2+X X 0 X^2 0 X X^2 0 X^2 X^2 0 0 0 0 X X X^2 X^2+X X X^2 X 0 X 0 X X X^2+X X^2+X 0 X^2 X X X^2 0 X^2 X^2+X X^2+X 0 X 0 X^2 X X^2+X X 0 X^2+X 0 X 0 X^2+X X X X^2 X 0 X^2 0 X^2 0 0 X^2+X X^2 0 X^2 0 X 0 X^2 X^2 X X X^2 X^2 X^2+X 0 X^2+X X^2 X^2 0 0 0 0 0 X^2 X^2 X^2 0 0 0 X^2 0 0 0 X^2 X^2 X^2 X^2 X^2 0 X^2 X^2 0 0 X^2 0 X^2 X^2 X^2 X^2 0 0 0 0 X^2 X^2 X^2 0 0 0 X^2 0 0 X^2 X^2 0 X^2 0 X^2 X^2 X^2 X^2 X^2 X^2 0 X^2 X^2 X^2 0 0 0 0 X^2 X^2 X^2 0 X^2 generates a code of length 68 over Z2[X]/(X^3) who´s minimum homogenous weight is 60. Homogenous weight enumerator: w(x)=1x^0+263x^60+24x^61+114x^62+140x^63+416x^64+284x^65+130x^66+548x^67+337x^68+612x^69+114x^70+308x^71+283x^72+100x^73+90x^74+28x^75+175x^76+4x^77+52x^78+51x^80+12x^82+9x^84+1x^104 The gray image is a linear code over GF(2) with n=272, k=12 and d=120. This code was found by Heurico 1.16 in 12.3 seconds.